

[unplementation: Store counter i EN (Mit: 0)
reservoir element to (Mit: None)
Stream (W):
$$W \in W$$
 $W = \frac{1}{1+1}$
(H) the element $W = W = \frac{1}{1+1}$ (evict)
i 4 it!
Report(): return W
Why is $W = W$; $W = \frac{1}{1+1}$ for all $J \in M$?
 $Pr(W = W;) = \frac{1}{1+1} \cdot \frac{1}{1+2} \cdot \dots \cdot \frac{n-1}{n}$
 $eviction j = \frac{1}{1+1} \cdot \frac{1}{1+2} \cdot \dots \cdot \frac{n-1}{n}$
 $no eviction j = \frac{1}{1+1} \cdot \frac{1}{1+1} \cdot \dots \cdot \frac{n-1}{n}$
 $no eviction j = \frac{1}{1+1} \cdot \frac{1}{1+1} \cdot \dots \cdot \frac{n-1}{n}$

Another interpretation: "fixing" distributions

$$T_{k} := 0.44. \text{ of } \overline{W} \quad \text{after } W_{1}, W_{2}, \dots, W_{k}$$
We prove inductively T_{k} unitam over $W \quad \forall k$
Base case: $k=1$, $\overline{W} \leftarrow W_{1}, W_{2}, \dots$
Base case: $k=1$, $\overline{W} \leftarrow W_{1}, W_{2}, \dots$
 W_{k}
Base case: $k=1$, $\overline{W} \leftarrow W_{1}, W_{2}, \dots$
 $\lim_{k \to \infty} W_{k}$
 $\lim_{k \to \infty} W_{k}$
 $\lim_{k \to \infty} (W_{2}) = \lim_{k \to 1} |j=k_{1}|$
(evice)

• We can relate M to II

(
$$r_{22}$$
 stuff... Box-Muller transform
 $U_{1}, U_{2} \sim U_{n}; f([0, 1])$
 $t_{1}, U_{2} \sim U_{n}; f([0, 1])$
 $t_{1}, J_{2} \sim U_{2}(U_{1}) \cos(2\pi U_{2}) \sim Nor(0, 1)$

Problem:
$$l = \sum_{\omega \in \Omega} T(\omega)$$

 $\leq \sum_{\omega \in \Omega} M(\omega) = 1$

This idea only worlds if $T = M \dots$ Fix: Scaling/ unnormalizing

We write
$$T \propto P$$
 for sine $P: \Omega \Rightarrow R_{20}$
ditrivition Universitized
ditrivition Universitized
ditrivition (W) = $\frac{P(w)}{NP}$ $\forall w \in \Omega$
where $NP = \sum_{w \in \Omega} P(w)$ "total weight"
 $\exists k \ge Normalizeng$
 $where NP = \sum_{w \in \Omega} P(w)$ "total weight"
 $\exists k \ge Normalizeng$
 $w \in \Omega$
 $u \in \Omega$ $\exists k \ge Normalizeng$
 $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$ $u \in \Omega$
 $u \in \Omega$ $u \in \Omega$
 $u \in \Omega$ $u \in \Omega$
 $u \in \Omega$ $u \in \Omega$
 $u \in \Omega$ $u \in \Omega$
 $u \in \Omega$ $u \in \Omega$
 $u \in \Omega$ $u \in \Omega$
 $u \in \Omega$ $u \in \Omega$
 $u \in \Omega$ $u \in \Omega$
 $u \in \Omega$ $u \in \Omega$
 $u \in \Omega$ $u \in \Omega$
 $u \in \Omega$ $u \in \Omega$
 $u \in \Omega$ $u \in \Omega$
 $u \in \Omega$ $u \in \Omega$
 $u \in \Omega$ $u \in \Omega$
 $u \in \Omega$ $u \in \Omega$
 $u \in \Omega$ $u \in \Omega$
 $u \in \Omega$ $u \in \Omega$
 $u \in \Omega$ $u \in \Omega$
 $u \in \Omega$ $u \in \Omega$
 $u \in \Omega$ $u \in \Omega$
 $u \in \Omega$ $u \in \Omega$
 $u \in \Omega$ $u \in \Omega$
 $u \in \Omega$ $u \in \Omega$
 $u \in \Omega$ $u \in \Omega$
 $u \in \Omega$ $u \in \Omega$
 $u \in \Omega$ $u \in \Omega$
 $u \in \Omega$ $u \in \Omega$
 $u \in \Omega$ $u \in \Omega$
 $u \in \Omega$ $u \in \Omega$
 $u \in \Omega$ $u \in \Omega$
 $u \in \Omega$ $u \in \Omega$
 $u \in \Omega$ $u \in \Omega$
 $u \in \Omega$ $u \in \Omega$
 $u \in \Omega$ $u \in \Omega$
 $u \in \Omega$ $u \in \Omega$
 $u \in \Omega$ $u \in \Omega$
 $u \in \Omega$ $u \in \Omega$
 $u \in \Omega$ $u \in \Omega$
 $u \in \Omega$ $u \in \Omega$
 $u \in \Omega$ $u \in \Omega$
 $u \in \Omega$ $u \in \Omega$
 $u \in \Omega$ $u \in \Omega$
 $u \in \Omega$ $u \in \Omega$
 $u \in \Omega$ $u \in \Omega$
 $u \in \Omega$ $u \in \Omega$
 $u \in \Omega$ $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$ $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$ $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$
 $u \in \Omega$

Assume:
$$TT \not \subset P(toget) \xrightarrow{P(\omega)} f(\omega)$$

 $M \not \subset Q(retende) \xrightarrow{Q(\omega)} f(\omega)$
 $f(\omega) \xrightarrow{f(\omega)} f(\omega)$

Proof:
$$Pr(Z=1) = \sum_{w \in \Lambda} M(w) \cdot \frac{P(w)}{Q(w)}$$

 $= \left(\sum_{w \in \Lambda} P(w)\right) \cdot \frac{1}{NQ}$
 $= \frac{NP}{NQ}$ Chance / loop

We keep looping until first
$$Z=1$$
,
Like coun flipping: first heads f in $\frac{Na}{NP}$
Done w/ Claim 1.
Conditional on $Z=1$, weight $d(Q(w))\frac{P(w)}{Q(w)}$
 $= P(w)$

Done w/ Clam 2.

$$\mathcal{D}(w) = | \forall w \in Shape_1$$

 $\mathcal{D}(w) = | \forall w \in Shape_2$

Acceptance prob. = Matio of areas

Metropolis-Haltings (Put VII, Section 4.3) Predominant Sampling francework today. Top (O algo of the 20th century. 1 des: reduce Samilly from large, Globs | distribution T : N -> (O(1) to $(o(\omega) | \partial: stubulins T_{\omega} : \square \rightarrow (o_i)$ "transition probability" て

